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ABSTRACT

A new family of bifunctional H-bond donor phase-transfer catalysts derived from cinchona alkaloids has been developed and evaluated in the
enantio- and diastereoselective nitro-Mannich reaction of in situ generated N-Boc-protected imines of aliphatic, aromatic, and heteroaromatic
aldehydes. Under optimal conditions, good reactivity and high diastereoselectivities (up to 24:1 dr) and enantioselectivities (up to 95% ee) were
obtained using a 9-amino-9-deoxyepiquinidine-derived phase-transfer catalyst possessing a 3,5-bis(trifluoromethyl)phenylurea H-bond donor
group at the 9-position.

For an efficient, enantioselective union of enolizable pro-
nucleophiles to reactive electrophiles such as imines and

Michael acceptors, two particularly successful classes
of catalysts are bifunctional Brønsted base/H-bond donor
organocatalysts1 and asymmetric phase-transfer (APT)
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catalysts2 (Figure 1). Both continue to attract signifi-
cant attention from the research community and
show potential for industrial and scale-up applications.3

However, neither class is without their limitations, a
number of which we have observed during the course of
ourownresearch investigations.4Forexample,withcinchona-
derived bifunctional Brønsted base/H-bond donor
catalysis, although high levels of enantiocontrol can be
observed with a range of pro-nucleophiles and electro-
philes, poor reactivity can often be witnessed.1c,5 This is
particularly apparent for high pKa pro-nucleophiles where
long reaction times, high reaction temperatures, and/or
high catalyst loadings are commonly required. With APT
catalysis, higher levels of reactivity can be achieved (for
example, relatively nonacidic carbon-centered acids can be
employed in conjunction with strong external bases).
However, the levels of enantioinduction are highly depen-
dent on the exact structure of the pro-nucleophile and/or
electrophile, and small variations can result in substantial
loss of enantiofacial selectivity.2b

One design concept that could simultaneously address
these issues is to link a (variable) H-bond donor group to
an appropriate quaternary ammonium salt via a chiral
scaffold (Figure 1).6 Potentially, this would combine pro-
nucleophile activation (under strong base promotion) with
substrate control, preorganization, and activation and thus
lead to desirable levels of reactivity and stereoselectivity in a
broad range of reactions. Tactically, we envisaged that a
short and effective route to such catalysts would be to
alkylate the nucleophilic bridgehead nitrogen atom of
cinchona-derived bifunctional Brønsted base/H-bond donor
catalysts. In turn, these would be readily prepared on
scale in one step from 9-amino-9-deoxyepicinchona alka-
loids. The late stage introduction of these two key catalyst
features, namely the alkyl group of the quaternary ammo-
nium salt and the H-bond donor group, would enable
focused libraries of catalysts to be easily accessed, thus
facilitating rapid optimization in any reaction of interest.
Herein we describe the synthesis of a new family of APT

catalysts bearing ureas, amides, and sulfonamides as
H-bond donor groups, and we also present an evaluation
of their performance in the nitro-Mannich reaction of
amidosulfones.
A library of cinchonium/H-bond donor bifunctional

asymmetricphase-transfer catalysts2�9was readily formed

by reaction of 9-amino-9-deoxyepicinchona-derived ureas,
amides, and sulfonamides with benzyl bromide, p-(trifluo-
romethyl)benzyl bromide, and (9-anthracenyl)methyl
chloride in toluene at 65 �C for 12 h (Scheme 1).
The new family of asymmetric phase-transfer catalysts

was tested in the enantioselective nitro-Mannich reaction
of in situ generated N-Boc-protected imines of aliphatic,
aromatic, and heteroaromatic aldehydes, introduced
by Herrera and Bernardi,6e and Palomo.6d This reac-
tion is known to proceed well under asymmetric phase-
transfer catalysis conditions.7 However, we believed that

Figure 1. Concept and design of a new family of cinchona-
derived bifunctional asymmetric phase-transfer catalysts.
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good stereocontrol could arise from the linked H-bond
donor groups, as has been seen previously in Mannich
and nitro-Mannich reactions catalyzed by bifunctional
cinchona-derived (thio)ureas.8

Amidosulfone 10awas chosen as a model substrate, and
its base-mediated reaction with nitromethane under solid/
liquid APT conditions with catalysts 2�9 was assessed for
efficiency and stereocontrol (Table 1). Initially, a reactivity
study was carried out using catalyst 2 in conjunction with
finely ground KOH, K2CO3, Cs2CO3, and CsOH with
toluene as solvent. Very pleasingly at �20 �C, KOH and
catalyst 2 gave the desired nitro-Mannich product (S)-12a
in 67% yield and 82% ee (entry 1). Interestingly, none of
the other three bases effectively promoted the reaction.
A range of cinchonidine-derived catalysts presenting

variations in both the H-bond donor group and N-alkyl
group were then screened in the reaction with KOH in
toluene at �20 �C (Table 1). With catalyst 6, possessing a
3,5-bis(trifluoromethyl)benzoylamide, good reactivitywas
observed, but enantiocontrol was diminished (58% ee,
entry 5) relative to urea 2. On the other hand, sulfonamide
7 was incompetent as a phase-transfer catalyst in this
reaction (entry 6). Comparing the performance of a series
of ureas with variable ammonium salts, p-(trifluoro-
methyl)benzylammonium salt 3 gave similar results to
benzyl catalyst 2 (70% yield, 81% ee, entry 7), whereas
catalyst 4 possessing an anthracenyl group imparted
slightly diminished enantioselectivity and the product

was obtained in 53% yield (entry 8). From the above
results, it was concluded, at this stage, that for maximum
selectivity the combination of a urea at the 9-positionof the
9-amino-9-deoxyepicinchonidine scaffold andanN-benzyl
group on the bridgehead nitrogen were required. Impor-
tantly, a simple cross-check using commerical N-benzyl-
cinchonidinium bromide as the catalyst, under identical
reaction conditions, afforded the enantiomeric product in
substantially reduced yield and with poor stereocontrol
[(R)-12a was obtained in 34% ee and 29% yield]. This
result confirmed that the urea functionality was playing a
key role in controlling the stereochemical course of the
reaction. The related cinchonine-, quinine- and quinidine-
derived catalysts 8, 5, and 9, respectively, were then sub-
jected to the reaction conditions and, pleasingly, gave rise
to good reactivity and similar levels of control across the
series (entries 9�11).Quinidine derived catalyst9narrowly
out-performed the others and was therefore selected as
the catalyst of choice for the remainder of the optimiza-
tion studies. Lowering the temperature of the reaction to
�40 �C had no beneficial effect on enantiocontrol but did
significantly decrease the reaction rate (entry 12). Neither
concentrating nor diluting the reaction mixture, nor redu-
cing the catalyst loading to 5 mol%, deleteriously affected

Table 1. Nitro-Mannich Optimization with Substrate 10a

cat.

X

(%) base solvent

concn

(M)

temp

(�C)
time

(h)

yielda

(%)

eeb

(%)

1 2 10 KOH toluene 0.1 �20 12 67 82

2 2 10 K2CO3 toluene 0.1 �20 34 ndc

3 2 10 Cs2CO3 toluene 0.1 �20 34 ndc

4 2 10 CsOH toluene 0.1 �20 13 ndc

5 6 10 KOH toluene 0.1 �20 12 78 58

6 7 10 KOH toluene 0.1 �20 12 ndc

7 3 10 KOH toluene 0.1 �20 12 70 81

8 4 10 KOH toluene 0.1 �20 12 53 71

9 8 10 KOH toluene 0.1 �20 12 78 85d

10 5 10 KOH toluene 0.1 �20 12 59 80

11 9 10 KOH toluene 0.1 �20 12 91 85d

12 9 10 KOH toluene 0.1 �40 40 71 84d

13 9 10 KOH toluene 0.05 �20 12 79 85d

14 9 10 KOH toluene 0.2 �20 12 77 85d

15 9 5 KOH toluene 0.1 �20 12 72 85d

16 9 5 KOH EtOAc 0.1 �20 12 78 80d

17 9 5 KOH CH2Cl2 0.1 �20 12 73 84d

18 9 5 KOH tol/CHCl3 0.1 �20 12 35 86d

19 9 5 KOH TBME 0.1 �20 12 79 89d,e

20 5 5 KOH TBME 0.1 �20 24 66 84

a Isolated yield. bDetermined by chiral stationary phase HPLC.
cReaction did not proceed or proceeded very slowly to 12a. dEnantio-
meric (R)-12a was obtained. eThe R configuration of (R)-12a was
established through comparison of its specific rotation with literature
data; see the Supporting Information.

Scheme 1. Synthesis of Catalyst Library

aMade from pseudo-enantiomeric starting materials.
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the enantioselectivity (entries 13�15). Finally, a solvent
screen (entries 15�19) revealed TBME as the solvent
of choice and the optimal conditions employed KOH
(5 equiv) as base and 5 mol % catalyst 9 at �20 �C for
12 h; (R)-12a was obtained in 79% yield and 89% ee
(entry 19). Under the fully optimized conditions but
using pseudo-enantiomeric catalyst 5, the enantiomeric
product (S)-12a was obtained in 66% yield and 84% ee
(entry 20).

With optimal conditions in hand, the scope of the
reaction with respect to the amidosulfone was surveyed
(Table 2). A variety of amidosulfones derived from aro-
matic aldehydes proved effective, with substitution in the
para position being well-tolerated with excellent enantio-
selectivities observed with both electron-rich (90�91% ee,
entries 1 and 2) and electron-poor (90�91% ee, entries 3
and 4) aromatics. Polycyclic aromatic and heteroaromatic
amidosulfones also proved effective, with 2-naphthyl and
3-pyridinyl amidosulfones both giving their respective
products in 92% ee (entries 5 and 6). Next, we set out to
assess the generality of the reaction with other nitroalkane
pro-nucleophiles. Pleasingly, the reaction of phenyl ami-
dosulfone 10a with nitroethane proceeded smoothly to

give product 12h in 83% yield with excellent diastereos-
electivity (24:1 anti:syn) and enhanced enantioselectivity
(94% ee, entry 7) relative to the analogous experiment
with nitromethane. This same enhancement was observed
with other substituted nitroalkanes such as nitropropane
(92% ee, 17:1 dr, entry 8) and 4-nitrobut-1-ene (95% ee,
6:1 dr, entry 9).
Finally, we investigated the performance of amidosul-

fones derived from aliphatic aldehydes. Good results were
obtainedwith sterically hindered amidosulfones; tert-butyl
amidosulfone 10h yielded the expected product with ex-
cellent enantiocontrol (90% ee, entry 10). Less hindered
aliphatic amidosulfones such as cyclohexyl amidosulfone
10i led to a slight decrease in enantioinduction (84%ee), but
as with aromatic amidosulfones, an enhancement in enan-
tiocontrol was also observed when larger nitroalkanes were
used.The reactionsof10iwithnitroethane (95%ee, entry 12)
and 4-nitrobut-1-ene (93% ee, entry 13) proceeded with
excellent enantioselectivity and good diastereoselectivity.
In summary, we have developed a new family of cinch-

onium/H-bond donor bifunctional asymmetric phase-
transfer catalysts. Their straightforward two-stage synthe-
sis from 9-amino-9-deoxyepicinchona alkaloids readily
allows variation of both the alkyl group of the quaternary
ammonium salt and the H-bond donor group and thus
rapid access to focused libraries of novel catalysts. These
catalysts combine the good reactivity profile of previously
reported asymmetric phase-transfer catalysts with the tun-
able stereocontrol of bifunctional Brønsted base/H-bond
donor catalysts.Wehave also successfully demonstrated the
application of this new family of catalysts to the enantio-
and diastereoselective nitro-Mannich reaction of in situ
generated N-Boc-protected imines of aliphatic, aromatic,
and heteroaromatic aldehydes. Other applications of cata-
lysts 2�9, and their analogues, are under active investiga-
tion in our laboratories and will be reported in due course.
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Table 2. Scope of the Nitro-Mannich Reaction

10 R1 11 R2 12

yielda

(%)

dr anti:

synb

eeanti
c

(%)

1 b p-Me-Ph a H b 64 91

2 c p-OMe-Ph a H c 84 90

3 d p-F-Ph a H d 65 90

4 e p-CF3-Ph a H e 65 91

5 f 2-naphthyl a H f 87 92

6 g 3-pyridyl a H g 73 92

7 a Ph b Me h 83 24:1 94

8 a Ph c Et i 94 17:1 92

9 a Ph d CH2CHdCH2 j 64 6:1 95

10 hd tert-butyl a H k 63 90

11 i cyclohexyl a H l 100 84

12 i cyclohexyl b Me m 75 9:1 95

13 i cyclohexyl d CH2CHdCH2 n 82 11:1 93

14 j iso-butyl b Me o 100 13:1e 90

a Isolated yield. bDetermined by 1HNMRor chiral stationary phase
HPLC analysis. cDetermined by chiral stationary phase HPLC. dTo-
luenesulfinic acid-derived amidosulfone was used. e See the Supporting
Information for proof of absolute and relative stereochemistry.
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